Module designation	Molecular Approach to Animal Breeding and Reproduction			
Semester(s) in which the	Odd and even semesters			
module is taught	Uad and even semesters			
Person responsible for the	Prof. Ir. Diah Tri Widayati, M.P., Ph.D., IPM.			
module	Dr. Ir. Sigit Bintara, M.Si., IPM. ASEAN Eng.			
	Prof. Ir. Tety hartatik, S.Pt., Ph.D., IPM.			
	Ir. Dyah Maharani, S.Pt, M.P., Ph.D, IPM.			
Language	Bahasa and English			
Relation to curriculum	Specialization's Compulsory			
Teaching methods	Classical lecture and discussion			
Workload (incl. contact hours,	Total workload: 79 hours			
self-study hours)	Contact hours:			
	- Lecture: 23 hours			
	 Academic activity: 28 hours 			
	Private study: 28 hours			
Cradit painta				
Credit points	2/0			
proroquisitos for isining the	Nono			
module	None			
Module objectives/intended	Course Outcomes (CO):			
learning outcomes	1 Be able to comprehend the molecular concept in the animal			
	 Be able to comprehend the molecular concept in the animal broading and reproduction field 			
	Deeding and reproduction neit			
	2. Be able to describe the genetic transfer technology for animals			
	3. Be able to describe the molecular contribution in the current			
	animal reproduction biotechnology and in the future			
	4. Know about the current trend in the animal breeding and			
	reproduction and design the breeding and reproduction			
	strategy based on the needs			
	Expected Learning Outcomes:			
	- Mastery in Sciences:			
	1. Able to master scientific philosophy and develop new			
	science and technology in animal science is useful,			
	competitive, and environmentally sound research with a			
	Able to develop new science and technology concents to			
	2. Able to develop new science and technology concepts to solve problems in the field of animal husbandry through			
	research with multidisciplinary and transdisciplinary			
	approaches (CO1 CO2 CO3 CO4)			
	- Special skills:			
	1. Able to develop science and technology through creative,			
	Able to independently design and corry out inter- multi			
	2. Able to independently design and carry out inter-, multi-, and transdisciplinary, research for the development of			
	animal husbandry science and technology (CO2)			
	3. Able to manage, lead and develop research in the field of			
	animal husbandry, as well as communicate the results and			
	get recognition at the national and international levels for			
	the benefit of humankind. (CO2, CO3, CO4)			
	- General skills			
	1. Able to develop a research roadmap to compile scientific,			

Content	 technological, or artistic arguments and solutions based on a critical view of facts, concepts, principles, or theories with an interdisciplinary, multidisciplinary, or transdisciplinary approach, based on a study of the main objectives of the research and their constellation on broader targets. (CO1, CO2) Able to communicate the result of reasoning and scientific research in the form of dissertation and scientific writing responsibly based on academic ethics. (CO3, CO4) Molecular Approach to Animal Breeding and Reproduction is a course that studies about the animal breeding and reproduction in molecular, not conventional anymore. Animal selection using 				
	performance and reproduction can be performed on the cellular level or molecular, and that use a certain gene marker that control				
	production and reproduction traits.				
Exams and assessment formats	Assessment Components		Course Outcomes (CO)	Percentage (%)	
	 Midterm exam (written test, paper assignment) 		CO 1, CO 2, CO 3 & CO 4	30	
	2. Final exam (written test, paper assignment)		CO 1, CO 3 & CO 4	30	
	 3. Discussion 4. Assigments 		CO 3 & CO 4	20	
			CO 1 & CO 3	20	
	Grade and Score				
	Grade	Score	Grade	Score	
	A	≥80	C+	45-49,9	
	A-	75-79,9	C	40-44,9	
	A/B	70-74,9	C-	35-39,9	
	B+	65-69,9	C/D	30-34,9	
	B	60-64,9	D+	25-29,9	
	B-	55-59,9	D	20-24,9	
	B/C	50-54,9	E E	0-19,9	
requirements	Ne final grade in the module is composed of 30% performance on Midterm exam, 30% final exam, 20% discussion, 20% assignment. Students must have a final grade of 70% or higher to pass				
Reading list	 Bearden, J. H. and J.W. Fuquay, 2004, Applied Animal Reproduction, Reston Publishing Company Inc., Virginia. Hafez, E.S.E., 2003, Reproduction in Farm Animals, 7th edition, Lea and Febiger, Philadelphia. Noakes, D.E., T.J. Parkinson, G.C.W. England, G. H. 2018. Veterinary Reproduction & Obstetrics. Saunders, Toronto. Squires, J.E. 2010. Applied Animal Endocrinolog, 2nd. Edition. CABI, United Kingdoom Jiang, Z and Ott TL. 2011. Reproductive Genomics in Domestic Animal. 1st ed. Wiley-Blackwell, United Kingdoom 				