Course: Research Techniques in Animal Nutrition and Feed Science

- **1. Type** : Specialization's Compulsory
- **2. Code** : PTN 6103

:

- **3. Credit** : 2/0
- **4. Semester** : Even
- 5. Description

Students in the graduate program need adequate knowledge in conducting research so that the results can be trusted and accounted. This course provides knowledge concerning research that often used in the animal nutrition and feed science. Basic principles in research techniques are provided to guide student sin better understanding the techniques, to create comprehensive discussion from a research. This course contains several research techniques, either conducted in the laboratory or on site. Courses are done by theory and discussion that students are expected to be able to choose the appropriate research techniques, able to design research techniques either from logistic aspects, retrieval and preparation of samples for both livestock and feed, and data analysis.

6. Course Outcomes (CO)

- CO 1 : Students are able to understand research theories and techniques, coordinate the logistic needed, take the right samples, process and draw conclusion from the data obtained.
- CO 2 : Students are able to design a study with suitable research techniques and coordinate the research techniques to be carried out.
- CO 3 : Students master research techniques related to animal nutrition and feed science, competent to work interdisciplinary, as well as communicate their ideas and opinions.
- CO 4 : Able to solve problems and anticipate issues in the development of animal science and industry.

7. The Alignment Between CO and ELO

		ELO**																
	CO*	А			В		C			D								
		1	2	3	4	1	2	3	1	2	3	4	1	2	3	4	5	6
ſ	CO 1	\checkmark			\checkmark													
	CO 2							\checkmark		\checkmark								
	CO 3												\checkmark					

*CO refers to point 6.

**Expected Learning Outcomes (ELO) are written below,

A. Attitudes and Behaviors

The graduates are able to behave well, correctly, and culturally as the result of internalization and actualization of values and norms, which is reflected in a spiritual and social life through learning process, experience, research, and/or community development in the animal husbandry.

1 Piety to God and be able to show religious attitude and maintain the humanity values in carrying the task, which is based on religion, moral, and ethics.

2	Be proud and love the homeland show nationalism, and contribute to the improvement of the life quality in the community, nation and country, and the advancement of civilization according to Pancasila.						
3	Showing the social sensitivity and attention to the community and environment by respecting the culture diversity, view, religious, beliefs, and other people's opinion, and also obey the rules.						
4	Be accountable in carrying the professional practice that includes ability to accept accountability towards decision and professional action. It shall be according to the scope of the practice under their responsibility and laws.						
B. 1	Mastery in Sciences						
Mast	er the theory of the current science in the animal husbandry and its application.						
1	Able to master the current animal science and its application theory.						
2	Able to master the livestock production science, animal nutrition and fed science, animal products technology, and the livestock social economics in relation to food security and environment.						
3	Able to master the design, management, and development of livestock research.						
C. 5	Special Skills						
	graduates are able to develop science, technology, and arts in the animal husbandry through lisciplinary/multidisciplinary innovative and tested research.						
1	Able to make innovation in the animal husbandry based on the development of science and technology.						
2	Able to design interdisciplinary and multidisciplinary research in the animal husbandry.						
3	Able to formulate and solve problems in the national development especially in terms of animal husbandry.						
4	Able to solve problems and anticipate issues in the development of animal science and industry.						
The g the a	General Skills graduates are able to manage resources by utilizing science, technology, and arts to solve problems in inimal husbandry with current science and also conduct research with accountability and full insibility.						
1	Able to develop logical, critical, systematic, and creative thought through scientific research, creation of design in the science and technology, which pays attention and applies humanity values according to their expertise. The graduates are able to arrange scientific concept and the study result based on the principles, procedures, and scientific ethics.						
2	Able to identify the science that becomes their research object and position it to a research map by using information technology in the context of science development and expertise implementation developed through interdisciplinary or multidisciplinary approaches.						
3	Able to make a decision in the context of solving problems in the development of science and technology, which pays attention and applies humanity values based on analysis study or experiment towards information and data.						
4	Able to communicate the result of reasoning and scientific research in form of thesis and scientific writing responsibly based on academic ethics in the accredited national journal.						
5	Able to maintain the academic integrity generally and avoid the plagiarism practice.						
6	Able to communicate spoken and written English effectively by using the information technology for the development of animal science and its implementation.						

8. Course Content

Week	СО	Topic/Subtopic	Learning Activity	Assessment Tools	Allocated Time	Lecturer
	CO 1;	Introduction	Classical	Exam	2 x 50	Ristianto
1	CO 2	Techniques on	lecture and		minutes	Utomo
1		feed analysis and	discussion			
		evaluation,				

		experimental				
		design				
	CO 1;	Digestibility	Classical	Exam	2 x 50	Ristianto
2	CO 2;	evaluation on	lecture and		minutes	Utomo
	CO 3	ruminant	discussion			
	CO 1;	Digestibility	Classical	Exam	2 x 50	Bambang
3	CO 2;	evaluation on	lecture and		minutes	Suhartanto
3	CO 3	pasture land by	discussion			
		using indicator				
	CO 1;	Techniques on	Flip class; e-	Exam	2 x 50	Nafiatul
4	CO 2;	grass breeding	learning		minutes	Umami
4	CO 3;		assignment			
	CO 4					
	CO 1;	Analysis of	Flip class; e-	Exam	2 x 50	Nafiatul
5	CO 2;	genetic diversity	learning		minutes	Umami
5	CO 3;	by using RAPD-	assignment			
	CO 4	PCR				
	CO 1;	Techniques on	Classical	Exam	2 x 50	Zuprizal
6	CO 2;	urine separation;	lecture and		minutes	
	CO 3	poultry faeces	discussion			
	CO 1;	Techniques on	Classical	Exam	2 x 50	Zuprizal
7	CO 2;	energy	lecture and		minutes	
	CO 3	measurement	discussion			
		(poultry)				
			dterm Examina	Т		-
_	CO 1;	In sacco	Classical	Exam	2 x 50	Kustantinah
8	CO 2;		lecture and		minutes	
	CO 3		discussion			
	CO 1;	Techniques on	Classical	Exam	2 x 50	Kustantinah
-	CO 2;	protein	lecture and		minutes	
9	CO 3	degradation	discussion			
		measurement				
		(small intestine)		-		
	CO 1;	Estimation of	Classical	Exam	2 x 50	Zaenal
10	CO 2;	ruminal microbes	lecture and		minutes	Bacruddin
10	CO 3;	protein synthesis	discussion			
	CO 4	(indigenous				
		cattle)				

	CO 1;	Fermentation	Classical	Exam	2 x 50	Lies Mira		
11	CO 2;	kinetics	lecture and		minutes			
	CO 3		discussion					
	CO 1;	Microbes protein	Classical	Exam	2 x 50	Lies Mira		
12	CO 2;		lecture and		minutes			
	CO 3		discussion					
	CO 1;	Techniques on	Classical	Exam	2 x 50	Ali Agus		
13	CO 2;	body composition	lecture and		minutes			
15	CO 3	evaluation (in	discussion					
		vivo)						
	CO 1;	Techniques on	Classical	Exam	2 x 50	Ali Agus		
14	CO 2;	mycotoxin	lecture and		minutes			
	CO 3	analysis	discussion					
	CO 1;	Techniques on	Flip class, e-	Exam	2 x 50			
15	CO 2;	bio diversification	learning		minutes			
	CO 3							
	CO 1;	Techniques on	Classical	Exam	2 x 50			
16	CO 2;	chemical	lecture and		minutes			
	CO 3	separation	discussion					
	Final Examination							

9. Assessment

Component	СО	Percentage (%) for final grade	Minimum Satisfactory Level
Class participation	CO 1; CO 2; CO 3	20	70
Discussion	CO 3	10	70
Midterm	CO 1; CO 2	30	70
Final exam	CO 1; CO 2; CO 3	40	70
To	otal	100	

10. Lecturer

^{1.} Tim Dosen Pengampu

11. Reference

- ^{1.} Grobbelaar, J., A.W. Lishman, W.A. Botha, D.J. Millar, and S.F. Lesch. 1981. A simple technique for continuous infusion of adult sheep. S. Afr. J. Anim. Sci. 11: 55-81.
- ^{2.} IAEA, 1997. Estimating of Rumen Microbial Protein Yield from Purine Derivatives in Urine. A Laboratory Manual for FAO/IAEA Coordinated Research Programme. IAEA TECDOC-945. Viena.

- ^{3.} Little, D.A. 1972. Bone Biopsy in cattle and sheep for studies of phosphorus status. Austr. Vet. J. 48: 668-670.
- ^{4.} Long, E.C. 1976. Liquid Scintillation Counting Theory and Techniques. BeckmanInstrumens, Inc. Fulleton California, USA.
- Ørskov, E.R. and I. McDonald, 1979. The Estimation of Protein Degradability in the Rumenfrom Incubation Measurements Weighted According to Rate of Passage. J. Agric. Sci. Camb. 92: 499 – 503.
- ^{6.} Pirt, J. 1985. Principles of Microbe and Cell Cultivation.
- ^{7.} Stanbury, P.F. and A. Whitetaker. 1987. Principle of Fermentation Technology.
- ^{8.} Verite, R. 1980. Appreciation of nitrogen value of feeds for ruminants. In: Standardization of Analytical Methodology for Feeds. Proceeding of Workshop held Ottawa, Canada. March 1979. Ed. W.J. Pigden, C.C. Balch and M. Graham. Pp. 87-96.
- ^{9.} Widyobroto, B.P., M. Soejono, R. Utomo, Kustantinah, dan A. Agus. 1998. Pengukuran Degradasi In Sacco. Review Metodologi. Lokakarya Standarisasi Pengukuran Degradasi In Sacco di Indonesia, Yogyakarta.