Course: Forage Engineering and Feed Technology

1. Type : Specialization's Compulsory

:

- **2. Code** : PTN 6102
- **3. Credit** : 2/0
- **4. Semester** : Odd
- 5. Description

Indonesia is a tropical land with two seasons in a year: rainy and dry season, causing strong fluctuation in the forage supply. In rainy season, there are plenty forage supply but very limited supply in the dry season, this too, depends on the length of the dry season. Supply of concentrated feed ingredients derived from grains and agricultural industry by-products are strongly influenced by the harvesting season. The supply of feed tends to be abundant during harvesting season and far less available on post-harvest and planting season. Crops by-products supply are very volatile following the main crops harvest. The course of Forage Engineering and Feed Technology is designed to equip student to be competent in feed crop engineering, both genetically and on farm (agronomy or physiology) towards plant growth, production and quality of tropical forage, forage conservation technology, increase the quality of agricultural crop residues (roughage), as well as concentrate processing and storing system.

6. Course Outcomes (CO)

- CO 1 : Understand the basic principle of forage conservation and increase the quality of agricultural crops, as well as procedures in processing feed concentrate.
- CO 2 : Understand the chemical changes that occurred during the conservation and feed treatment, understand the effects of conservation and feed treatment towards feed fermentation in the rumen and livestock performance.
- CO 3 : Understand the mechanism changes in chemical composition, digestibility, and storage capacity of feed ingredients and finished feed, as a result of processing and storage.
- CO 4 : Able to formulate and solve problems in the cultivation of grass and legume plants, able to choose the right technique for the cultivation of feed crops (grass and legume) according to tropical climate.
- CO 5 : Master the techniques in the feed engineering both genetically and on farm (agronomy and physiology) towards the plant growth and production.

								E	ELO*	*							
CO*		I	4			В			(Ι)		
	1	2	3	4	1	2	3	1	2	3	4	1	2	3	4	5	6
CO 1				\checkmark		\checkmark											
CO 2					\checkmark		\checkmark		\checkmark			\checkmark					
CO 3							\checkmark		\checkmark			\checkmark					
CO 4				\checkmark			\checkmark				\checkmark			\checkmark			
CO 5				\checkmark			\checkmark			\checkmark			\checkmark		\checkmark		

7. The Alignment Between CO and ELO

*CO refers to point 6.

**Expected Learning Outcomes (ELO) are written below,

A. Attitudes and Behaviors

The graduates are able to behave well, correctly, and culturally as the result of internalization and actualization of values and norms, which is reflected in a spiritual and social life through learning process, experience, research, and/or community development in the animal husbandry.

1	Piety to God and be able to show religious attitude and maintain the humanity values in carrying the task, which is based on religion, moral, and ethics.
2	Be proud and love the homeland show nationalism, and contribute to the improvement of the life quality in the community, nation and country, and the advancement of civilization according to Pancasila.
3	Showing the social sensitivity and attention to the community and environment by respecting the culture diversity, view, religious, beliefs, and other people's opinion, and also obey the rules.
4	Be accountable in carrying the professional practice that includes ability to accept accountability towards decision and professional action. It shall be according to the scope of the practice under their responsibility and laws.
B. 1	Mastery in Sciences
Mast	er the theory of the current science in the animal husbandry and its application.
1	Able to master the current animal science and its application theory.
2	Able to master the livestock production science, animal nutrition and fed science, animal products technology, and the livestock social economics in relation to food security and environment.
3	Able to master the design, management, and development of livestock research.
C. §	Special Skills
The interc	graduates are able to develop science, technology, and arts in the animal husbandry through disciplinary/multidisciplinary innovative and tested research.
1	Able to make innovation in the animal husbandry based on the development of science and technology.
2	Able to design interdisciplinary and multidisciplinary research in the animal husbandry.
3	Able to formulate and solve problems in the national development especially in terms of animal husbandry.
4	Able to solve problems and anticipate issues in the development of animal science and industry.
D. (General Skills
The g the a respo	graduates are able to manage resources by utilizing science, technology, and arts to solve problems in mimal husbandry with current science and also conduct research with accountability and full onsibility.
1	Able to develop logical, critical, systematic, and creative thought through scientific research, creation of design in the science and technology, which pays attention and applies humanity values according to their expertise. The graduates are able to arrange scientific concept and the study result based on the principles, procedures, and scientific ethics.
2	Able to identify the science that becomes their research object and position it to a research map by using information technology in the context of science development and expertise implementation developed through interdisciplinary or multidisciplinary approaches.
3	Able to make a decision in the context of solving problems in the development of science and technology, which pays attention and applies humanity values based on analysis study or experiment
	towards information and data.
4	towards information and data. Able to communicate the result of reasoning and scientific research in form of thesis and scientific writing responsibly based on academic ethics in the accredited national journal.
4	towards information and data.Able to communicate the result of reasoning and scientific research in form of thesis and scientificwriting responsibly based on academic ethics in the accredited national journal.Able to maintain the academic integrity generally and avoid the plagiarism practice.

8.	Course	Content
----	--------	---------

Wool	CO	Tonio/Subtonio	Learning	Assessment	Allocated	Lacturar	
WEEK	co	Topic/Subtopic	Activity	Tools	Time	Lecturer	
	CO 3	Introduction:	Classical	Midterm	1 hour 40	Nafiatul	
1		forage engineering	lecture and		minutes	Umami	
1		based on breeding	discussion				
		techniques					
	CO 4	Forage engineering	Classical	Midterm	1 hour 40	Nafiatul	
2		based on breeding	lecture and		minutes	Umami	
		techniques	discussion				
	CO 4;	Production	Classical	Midterm,	1 hour 40	Bambang	
3	CO 5	management on	lecture and	quiz	minutes	Suhartanto	
		planting/cultivation	discussion				
	CO 4;	Production	Classical	Midterm,	1 hour 40	Bambang	
4	CO 5	management on	lecture and	quiz	minutes	Suhartanto	
		planting/cultivation	discussion				
	CO 5	Intercropping	Classical	Midterm,	1 hour 40	Bambang	
5		system on	lecture and	quiz	minutes	Suhartanto	
5		improving forage	discussion				
		and pasture quality					
	CO 4;	Forage	Flip class, e-	Midterm	1 hour 40	Bambang	
6	CO 5	engineering/	learning		minutes	Suwignyo	
		manipulation	assignment				
	CO 4;	Forage	Flip class; e-	Presentation	1 hour 40	Bambang	
7	CO 5	engineering/	learning		minutes	Suwignyo	
		manipulation	assignment				
	r	Mid	term Examinat	tion	r	Γ	
	CO 1;	Forage	Classical	Final exam	1 hour 40	Andriyani	
	CO 2	conservation:	lecture,		minutes	Astuti	
8		• Principles on	discussion				
0		ensilage					
		• Haylage and					
		bailage					
	CO 1;	Forage	Classical	Final exam.	1 hour 40	Andriyani	
	CO 2	conservation:	lecture,	quiz	minutes	Astuti	
9		• Forage drying	discussion				
		• Hay and					
		nutrient					
		alteration					

	CO 1;	Feed quality	Classical	Final exam	1 hour 40	Cuk Tri
	CO 2	improvement:	lecture;		minutes	Noviandi
10		• Principles of	discussion			
		physical				
		treatments				
	CO 1;	Feed quality	Classical	Final exam	1 hour 40	Cuk Tri
	CO 2	improvement:	lecture,	and quiz	minutes	Noviandi
		• Principles of	discussion			
		chemical				
		treatment				
11		Chemical				
		effect on				
		ruminal				
		fermentation				
		and animal				
		performance				
	CO 1;	Feed quality	Classical	Final exam	1 hour 40	Prof
	CO 2	improvement:	lecture,	and quiz	minutes	Ristianto
		• Principles of	discussion			Utomo
		biological				
10		treatment				
12		• Chemical				
		effect on				
		ruminal				
		termentation				
		and animal				
	<u> </u>	performance			1.1 40	D C
	02	Complete feed:		Final exam	1 nour 40	Proi Distignts
12		• Principles of	discussion	and quiz	minutes	Kistianto
15		Complete feed	uiscussion			Otomo
		• Complete leed				
	CO 3	VS Shage	Classical	Final avam	1 hour 40	Prof Ali
		storing of		and quiz	minutes	
		concentrate:	discussion	una quiz	minutes	1.1940
14		Principles of				
		processing and				
		storing				

		Concentrate quality during				
		storing				
Final Examination						

9. Assessment

Component	CO	Percentage (%) for	Minimum	
Component		final grade	Satisfactory Level	
Midterm	CO 4; CO 5	40	70	
Quiz	CO 4; CO 1	20	70	
Final exam	CO 1; CO 2; CO 3	40	70	
Τα	otal	100		

10. Lecturer

^{1.} Tim Dosen

11. Reference