Course: Advanced Egg Science and Technology

1. Type : Specialization's Elective

2. Code : PTH 6408

3. Credit : 2/04. Semester : Even

5. Description :

This course of Advanced Egg Science and Technology is elective course of animal product technology for graduate students. This course is basically an advanced course from the undergraduate degree that provides egg science and technology. An advanced egg science and technology will discuss protein component, carbohydrate and good fat seeing from physical structure, chemistry, and its characteristics. Next, it will elaborate physico-chemistry, functional, and egg nutritional value. The characteristics of physico-chemistry of egg protein will discuss viscosity, surface activity, and egg pH alteration. The egg fuctional characteristics discusses clumping, fertilization, emulsification process and type, and its influencing factors. Besides, it also explains egg microbiology and egg application in the industry both food and non-food. The egg microbiology discusses the egg damage which is caused by microbology and the type of its damage. The discussion is excepted to open the student's knowledge about the egg potency for being able to develop the knowledge and apply them in the egg processing technology. Hence, students are expected to be able to produce the research or technology that is useful for human by utilizing egg commodity.

6. Course Outcomes (CO)

CO 1 : Increase knowledge and the comprehension of basic science of component

and egg structures, egg processing principles and the instrument development

which is used for egg processing both food and non-food.

CO 2 : Increase the intellectual ability in evaluating the nutritional value of egg product and processed egg, able to identify the egg component for being

developed into various product which is useful for humans.

7. The Alignment Between CO and ELO

								Е	LO*	*							
CO*		A			В		C		D								
	1	2	3	4	1	2	3	1	2	3	4	1	2	3	4	5	6
CO 1						✓		✓	✓			✓					
CO 2							✓			✓	✓		✓	✓	✓		

^{*}CO refers to point 6.

A. Attitudes and Behaviors

The graduates are able to behave well, correctly, and culturally as the result of internalization and actualization of values and norms, which is reflected in a spiritual and social life through learning process, experience, research, and/or community development in the animal husbandry.

Piety to God and be able to show religious attitude and maintain the humanity values in carrying the task, which is based on religion, moral, and ethics.

^{**}Expected Learning Outcomes (ELO) are written below,

2	Be proud and love the homeland show nationalism, and contribute to the improvement of the life quality in the community, nation and country, and the advancement of civilization according to Pancasila.
3	Showing the social sensitivity and attention to the community and environment by respecting the culture diversity, view, religious, beliefs, and other people's opinion, and also obey the rules.
4	Be accountable in carrying the professional practice that includes ability to accept accountability towards decision and professional action. It shall be according to the scope of the practice under their responsibility and laws.
B. 1	Mastery in Sciences
Mast	er the theory of the current science in the animal husbandry and its application.
1	Able to master the current animal science and its application theory.
2	Able to master the livestock production science, animal nutrition and fed science, animal products technology, and the livestock social economics in relation to food security and environment.
3	Able to master the design, management, and development of livestock research.
C. S	Special Skills
	graduates are able to develop science, technology, and arts in the animal husbandry through disciplinary/multidisciplinary innovative and tested research.
1	Able to make innovation in the animal husbandry based on the development of science and technology.
2	Able to design interdisciplinary and multidisciplinary research in the animal husbandry.
3	Able to formulate and solve problems in the national development especially in terms of animal husbandry.
4	Able to solve problems and anticipate issues in the development of animal science and industry.
D. (General Skills
the a	graduates are able to manage resources by utilizing science, technology, and arts to solve problems in animal husbandry with current science and also conduct research with accountability and full onsibility.
1	Able to develop logical, critical, systematic, and creative thought through scientific research, creation of design in the science and technology, which pays attention and applies humanity values according to their expertise. The graduates are able to arrange scientific concept and the study result based on the principles, procedures, and scientific ethics.
2	Able to identify the science that becomes their research object and position it to a research map by using information technology in the context of science development and expertise implementation developed through interdisciplinary or multidisciplinary approaches.
3	Able to make a decision in the context of solving problems in the development of science and technology, which pays attention and applies humanity values based on analysis study or experiment towards information and data.
4	Able to communicate the result of reasoning and scientific research in form of thesis and scientific writing responsibly based on academic ethics in the accredited national journal.
5	Able to maintain the academic integrity generally and avoid the plagiarism practice.
	Able to communicate spoken and written English effectively by using the information technology

8. Course Content

Week	СО	Topic/Subtopic	Learning Activity	Assessment Tools	Allocated Time	Lecturer
	CO 1	Introduction:	Classical	Midterm	100	Prof. Dr.
1		 Physical and 	lecture			Ir.
1		chemical				Nurliyani,
						MS., IPM

		structure of				
		egg				
		• Chemical				
		composition				
	CO 1	of egg Egg protein:	Classical	Midterm	100	Prof. Dr.
		Structure and	lecture	Wildterin	100	Ir.
2		characteristic of	lecture			Nurliyani,
		egg protein				MS., IPM
	CO 1	Lipid and	Classical	Midterm	100	Prof. Dr.
2		carbohydrate of	lecture			Ir.
3		egg:				Nurliyani,
		characteristics				MS., IPM
	CO 1	Physico-chemical	Classical	Midterm	100	Prof. Dr.
		characteristics of	lecture			Ir.
4		egg protein:				Nurliyani,
		viscosity, surface				MS., IPM
	CO 1	activity, pH Functional	Classical	Midterm	100	Prof. Dr.
	COT	characteristics of	lecture	Midterin	100	Ir.
5		egg: coagulation,	lecture			Nurliyani,
		foaming				MS., IPM
	CO 1	Functional	Classical	Midterm	100	1,12,1,12,17
		characteristic of	lecture			Prof. Dr.
		egg: Emulsion				Ir.
6		type;				Nurliyani,
		emulsification and				MS., IPM
		affecting factors				
	GC *		term Examinat		100	
	CO 2	Nutrient value of	Classical	Final exam	100	
		egg:	lecture			Prof. Dr.
7		The importance of				Ir.
_ ′		egg nutrient Egg nutrient value				Nurliyani,
		from various				MS., IPM
		poultries				
	CO 2	Designer eggs	Classical	Final exam	100	Prof. Dr.
0			lecture			Ir.
8						Nurliyani,
						MS., IPM

	CO 1	Egg microbiology	Classical	Final exam	100	Widodo,		
9			lecture			SP.,M.Sc.,		
						Ph.D		
	CO 2	Egg application	Classical	Final exam	100			
		on food and non-	lecture					
		food industry:				Prof. Dr.		
		• Egg-based				Ir.		
10		food industry				Nurliyani,		
		• Egg				MS., IPM		
		application n				WIS., II WI		
		non-food						
		industry						
	CO 2	Review on egg	Discussion	Presentation	100	Prof. Dr.		
		research progress				Ir.		
						Nurliyani,		
11						MS., IPM		
						Widodo,		
						SP.,M.Sc.,		
						Ph.D		
	CO 2	Student	Discussion	Presentation	100	Prof. Dr.		
12-14		presentation				Ir.		
12-14						Nurliyani,		
						MS., IPM		
	Final Examination							

9. Assessment

Component	СО	Percentage (%) for final grade	Minimum Satisfactory Level
Midterm	CO 1	35	70
Presentation	CO 2	15	70
Paper	CO 2	15	70
Final exam	CO 1	35	70
To	tal	100	

10. Lecturer

- ^{1.} Prof. Dr. Ir. Nurliyani, MS., IPM.
- ^{2.} Widodo, SP., M.Sc., Ph.D.

11. Reference

- ^{1.} Romanoff, AL. and AJ. Romanoff. 1949.The Avian Egg. John Wiley & Sons, Inc, New York.
- ^{2.} Stadelman, WJ. 1995. Egg Science and Technology. 4th ed. Binghamton New York.